Visualisation of structured data through generative probabilistic modeling
نویسنده
چکیده
This thesis is concerned with the construction of topographic maps of structured data. A probabilistic generative model-based approach is taken, inspired by the GTM algorithm. Depending on the data at hand, the form of a probabilistic generative model is specified that is appropriate for modelling the probability density of the data. A mixture of such models is formulated which is topographically constrained on a low-dimensional latent space. By constrained, we mean that each point in the latent space determines the parameters of one model via a smooth non-linear mapping; by topographic, we mean that neighbouring latent points generate similar parameters which address statistically similar models. The constrained mixture is trained to model the density of the structured data. A map is constructed by projecting each data item to a location on the latent space where the local latent points are associated with models that express a high probability of having generated the particular data item. We present three formulations for constructing topographic maps of structured data. Two of them are concerned with tree-structured data and employ hidden Markov trees and Markov trees as probabilistic generative models. The third approach is concerned with astronomical light curves from eclipsing binary stars and employs a physical-based model. The formulation of the all three models is accompanied by experiments and analysis of the resulting topographic maps. To my parents Mαρία and Σταμάτης
منابع مشابه
Visualisation of tree-structured data through generative probabilistic modelling
We present a generative probabilistic model for the topographic mapping of tree structured data. The model is formulated as constrained mixture of hidden Markov tree models. A natural measure of likelihood arises as a cost function that guides the model fitting. We compare our approach with an existing neural-based methodology for constructing topographic maps of directed acyclic graphs. We arg...
متن کاملMetric Properties of Structured Data Visualizations through Generative Probabilistic Modeling
Recently, generative probabilistic modeling principles were extended to visualization of structured data types, such as sequences. The models are formulated as constrained mixtures of sequence models a generalization of density-based visualization methods previously developed for static data sets. In order to effectively explore visualization plots, one needs to understand local directional mag...
متن کاملA Generative Modeling Framework for Structured Hidden Speech Dynamics
We outline a structured speech model, as a special and perhaps extreme form of probabilistic generative modeling. The model is equipped with long-contextual-span capabilities that are missing in the HMM approach. Compact (and physically meaningful) parameterization of the model is made possible by the continuity constraint in the hidden vocal tract resonance (VTR) domain. The target-directed VT...
متن کاملVisualisation of Heterogeneous Data with the Generalised Generative Topographic Mapping
Heterogeneous and incomplete datasets are common in many real-world applications. The probabilistic nature of the Generative Topographic Mapping (GTM), which only handles complete continuous data originally, offers the ability to extend it to also visualise mixed-type and missing data as suggested in (Bishop et al., 1998a). This paper describes this generalisation of GTM and assesses the result...
متن کاملA Logic-based Approach to Generatively Defined Discriminative Modeling
Conditional random fields (CRFs) are usually specified by graphical models but in this paper we propose to use probabilistic logic programs and specify them generatively. Our intension is first to provide a unified approach to CRFs for complex modeling through the use of a Turing complete language and second to offer a convenient way of realizing generative-discriminative pairs in machine learn...
متن کامل